
2021-04-20 - US-1 Full Service Disruption
Updated 2021-07-01

Detailed Root Cause Analysis (RCA)
We understand the frustration that this service disruption caused to our US-1 customers, and we are
deeply sorry that this occurred. We know you rely on Auth0 to provide a critical service, and during
this incident, our service failed to deliver. We apologize.

Summary

On April 20th, 2021, our US-1 Production and Preview environments experienced a full service
disruption. During this time customers were unable to complete authentication flows. The requests
that passed through had extremely high latency (up to 100x on average). This service disruption was
due purely to performance degradation on our internal platform systems, was not the result of any
third-party service, and did not result in any data leakage. After investigation, we are confident that
the disruption was not caused by, and did not result in, a security compromise.

Details on a per-service impact are below—all times in UTC.

Service Start End

US-1 Production 15:27 19:47

US-1 Preview 15:27 20:04

All Regions - Degraded
Management Dashboard

15:27 18:18

All Regions - Management
Dashboard

18:18 20:04

Support Center 15:27 19:47

status.auth0.com 15:48 16:50

US-1 User Import/Export 15:27 23:25

US-1 User Search 15:27 23:25

From our analysis, we determined that the incident was caused by the exhaustion of resources for
our feature flag service and was further exacerbated by three poorly performing queries. This service
provides feature flag and configuration data to our front-end API nodes and is described in greater
detail later in this RCA. The feature flag service caused its clients to fail back to the server rather
than the cache. It then began querying the database directly with every request, overwhelming our

1

primary operational database, and leading to increased query response times. The increased query
response times caused a cascading failure as calling services repeatedly retried their API calls after
reaching timeout thresholds.

We responded immediately and attempted to solve the issue in several ways, initially focusing on the
query that we believed to have caused the problem. We executed a controlled step-down to failover
the primary database to one of the replica databases as a part of that effort. This replica database
resides in a different availability zone. (We considered executing a failover of the entire US-1
environment to another region, but opted not to do so because, since the disruption was due to load
and not unexpected infrastructure failure, failover of the entire environment would not have resolved
this type of performance issue.) When the query improvements and failover did not improve system
performance we shifted to reducing the load on the system to allow the database to recover.

We took a variety of steps to reduce load, which are detailed later on in this RCA. At 19:25, we scaled
down the maximum number of front-end API instances, which was the critical step in reducing load
sufficiently to allow the system to recover. We began to see authentication flows completing
successfully at 19:36, with core authentication services fully recovered at 19:47.

What Happened

The components that set off the chain of events in this incident are the feature flag service and the
overloaded database. The feature flag service provides our front-end API nodes with the
configuration values for tenants. This service includes a caching layer to reduce database load. A
client on each front-end API instance queries this service. If the cache does not respond within the
timeout, the client falls back to querying for the data directly from the feature flag service. The
service then queries the primary database.

With regards to the overloaded database, we identified three poorly performing queries which
impacted performance. These queries are used during normal system operation and have been in
use for months without issue. They are not ad-hoc or one-off queries. It was not until the queries
were combined with other heavy loads that their poor performance became problematic. Details on
the problems with these queries are below.

1. The first poorly performing query had a primary collection that did not have an index, and this
caused an unbounded scan of a very large collection.

2. The second query ran a collection scan that examined a high number of documents.
3. The third query was rare in frequency, but very resource-intensive. Its cleanup cascaded

through many collections.

Our analysis has concluded that there were three causes that - when compounded simultaneously -
resulted in this service disruption. In our summary RCA we noted initially suspecting that
slow-performing queries were the trigger, but our investigation has concluded that the initial
triggering factor for this incident originated from the feature flag service. An increase in traffic
exceeded the caching capacity of that service and caused it to stop responding in a timely manner.
This, in turn, caused the client on each front-end API node to fall back to querying the service directly

2

instead of the cache. The feature flag service then queried the primary database directly. The
additional load from these direct queries, combined with the three poorly performing queries
mentioned above, resulted in the database becoming overloaded and exceeding its available disk
I/O.

As front-end API nodes stopped receiving timely responses, they retried performing the original
queries, and more incoming requests were added to the queue. This increase in load caused the
front-end API nodes to scale out from 37 to 100 nodes, further loading the database and preventing
the system from recovering.

The system is designed to bypass our feature flag service cache should it become unresponsive.
Under normal circumstances, latency increases as the database handles this additional load but the
service returns to normal after the traffic spike subsides. In this incident, the database was also
overloaded and unable to respond in a timely manner. Our monitoring did detect that the feature flag
service had fallen back to the database, but in the moments during the incident, this was mistakenly
attributed to a problem in the front end API services.

Exacerbating the above, the Auth0 system is also designed to scale up our front-end API nodes when
their resource utilization rises beyond a threshold. The increased number of in-flight requests due to
long query times caused increased utilization, causing them to quickly scale to the maximum
number of instances. More front end API nodes connecting directly to the feature flag service shifted
the load from the feature flag service cache to the already poorly performing database, causing a set
of cascading failures.

How We Responded
At 15:27 UTC on April 20th, 2021, many different alerts were triggered for our US-1 Production
environment for login failures, latency, memory usage, errors, and database connections. We
declared an incident at 15:30, and the incident response team began investigating. Our initial
discovery showed poor performance across various services. Query response times had increased
significantly, and internal SLOs dropped. Our primary database was not reporting metrics, and the
front-end API servers had scaled up significantly.

At 15:45, we posted the incident to our Status Page as a major outage and described it as “An
increased error rate.” At that time, the scale of the impact was not yet clear, and our reporting
metrics were still showing a level of success. Shortly after, at 15:48, alerts triggered and paged the
team responsible for the status page. This spawned a separate incident, which is detailed in its own
section below.

One of our first steps was to disable promotion and revert to a previous release. We did so at 16:00
and 16:05, rolling back to the previous week’s versions. At 16:04, we reduced the maximums and
targets for our auto-scaling groups. At approximately 16:10, our primary database began reporting
metrics again, increasing our visibility into what was happening. A portion of the incident response
team then started investigating concerning queries.

3

Our investigation continued on multiple fronts, including into our feature flag service, database
performance, and auto-scaling group size. Representatives from every engineering team joined the
incident and worked quickly to determine how their respective services were performing, rule out
other causes, and disable non-critical services. This was an all hands on deck effort, with hundreds
of people from across the organization contributing to the investigation and providing what help they
could offer, while taking care not to disrupt the efforts of the core incident team.

At 17:08, the team deployed a change to add an index designed to help with one of the most
concerning queries. The index builds were completed at 17:21 but did not have any positive effect.
Our later investigation would show that the added index did not address the query performance (but
we note that this incorrect index was corrected shortly after the incident was resolved). When we did
not see an immediate impact, our primary focus shifted from targeted changes to considering all
options to reduce or reset load so the system could recover.

From 17:55 until 19:43, we took a variety of steps to reduce load as follows:

● 17:34 - Performed a controlled step-down of the primary database and promoted one of the
replica databases to primary

● 17:55-19:25 - Adjusted auto-scaling groups to cause front end API nodes to recycle
● 18:31 - Turned off feature flag service
● 19:09 - Turned off user exporting features
● 19:25 - Scaled down front-end API nodes from 100 to 45
● 19:39 - Scaled up secondary database node
● 19:43 - Turned off user importing features
● 19:43 - Implemented a reduced rate limit on our Authentication API

The 19:25 scale down from 100 to 45 front-end API nodes was the critical step that sufficiently
reduced load and allowed the system to recover. We received reports of slow but successful logins
at 19:36, with the restoration of core authentication services at 19:47.

Following the return of service, we began slowly restoring non-critical services and increasing the
primary database IOPS. All services were returned to normal functionality by 23:25.

Status Page Failure
We revamped our Status Page in October 2020 to provide more clarity on the status and uptime of
our various environments. During this incident, the new Status Page became overwhelmed by traffic
and was not responding from 15:48 to 16:50.

A separate team spun off to focus on restoring the Status Page. They initially believed this was a
capacity issue with the servers hosting it, but scaling those servers up had no impact. Further
investigation revealed that we were calling our Status Page provider's API each time it was loaded
and, with the increased amount of traffic, these calls were being rate-limited. While some customers

4

were still able to access the site during the periods we were not being rate-limited, the majority of
users saw either an error page or stale data. Upon realizing this, we pointed our DNS to the provider
and fell back on their standard Status Page.

At 16:20, we posted an update to our Status Page about “Reports of our status.auth0.com being
inaccessible for some customers,” and advised to check the @auth0status Twitter account. We are
now working on updates to the Status Page to cache results and avoid this rate-limiting in the future.

Mitigation Actions

We have taken this incident and our investigation very seriously, and have used all available
resources to fully identify all compounding circumstances that led to this service disruption. As
noted below, we have undertaken and completed many steps to rectify issues, and have established
a timeline for additional action.

What We’re Doing

Even though this was a rare confluence of factors, we immediately took action to increase capacity,
improve query performance, and other steps to prevent a similar disruption from occurring in the
future. In addition, we are taking the following actions as a result of this incident.

Update May 6, 2021: To provide transparency on the status of the improvements and corrections we
have completed, we will be providing regular updates every two weeks in this document on work that
has been completed.

Update May 20, 2021: Two action items were completed on May 19th and 20th. Our next update is
targeted for June 3rd, 2021.

Update June 3rd, 2021: No new completions as of this report. All actions in progress with June
targets are on track. Customer communication process updates are in progress, target moved out to
June 2021. Our next update is targeted for June 17, 2021.

Update June 17th, 2021: One new action completion related to shifting load to our secondary
databases. Our next update is targeted for July 1st, 2021.

Update July 1st, 2021: We have completed the remaining action items detailed below. This will be our
final update to this RCA. While these action items are complete, resilience continues to be a major
area of focus for our teams.

Systems/Platform

● Database
○ We have put in place indexes and query optimizations for poorly performing queries.

(Completed before April 29th)

5

https://twitter.com/auth0status

○ We have worked with our database software licensor to analyze the event and obtain
their input on performance improvement opportunities. (Completed before April
29th)

○ We are accelerating an already planned effort to improve our database performance
and resiliency. (Target June 2021, Completed June 25th 2021)

○ We are reviewing and optimizing indexes across a variety of queries, adding or
removing as necessary. (Target June 2021, Completed June 30th 2021)

○ We are adjusting various services to prioritize database performance or shift load to
the secondary database where possible. (Target June 2021, Completed June 9th
2021)

● System Performance
○ We are creating a playbook for how to most effectively reduce load during

exceptionally high load service disruptions like this should a similar incident occur in
the future. (Target May 2021, Completed May 19th 2021)

○ We are shifting resource intensive but not critical operations to services that can deal
with those operations in a way that does not impact database performance. (Target
June 2021, Completed June 29th 2021)

○ We are creating better error pages for the rare situations in which the system is
unavailable, which will indicate there is a service disruption and where to check the
status and get support. (Target June 2021, Completed June 24th 2021)

● Feature flag service
○ We have created a playbook for disabling the service should it be needed in a load

shedding situation in the future. (Completed before April 29th)
○ We scaled up the feature flag cache to ensure it does not become overwhelmed

during high traffic events. (Completed before April 29th)
○ We are reviewing and updating the feature flag caching instance configuration to

improve monitoring and performance. (Target May 2021, Completed May 5th 2021)
● Other Areas

○ We are improving our Status Page to be more resilient to high traffic by implementing
better caching mechanisms and other improvements. (Target May 2021, Completed
April 26th)

○ We are fixing problems in our offline ticket submission in the Support Center, which
did not work as expected during this incident. (Target June 2021, Completed: May 20
2021)

Customer Communications

● We are revisiting our customer communications processes for events such as these to
provide more clarity and transparency as to when customers can expect next and future
updates regarding incident status. (Target June 2021, Completed June 30th 2021)

General Incident Response

● We are reviewing and updating our incident response procedures to emphasize the
importance of understanding the full impact of an outage across our customer base as early

6

in the incident lifecycle as possible. In this case, we knew it was impactful, but our processes
did not put enough focus on understanding the depth of the impact, which led to missteps in
communication to customers. (Target June 2021, Completed June 29th 2021)

○ Since the incident we have made several adjustments to our internal Incident
Management process with the goal of being more consistent and efficient in our
response and communications. Most notably, we have:

■ Implemented additional tooling, dashboard, and alerting to monitor Auth0
availability % and latency SLOs

■ Improved Incident Commander training and established comprehensive
resolution playbooks

7

